任意角的三角函数

书籍:高中数理化公式定理大全 作者:雷扬, 欧阳占宝, 夏力安 朝代:2008-10-01 专题:书籍

1.任意角的三角函数定义

设α是一个任意大小的角.角α的终边上任意一点P的坐标是(x,y),它与原点的距离是r(r>0),那么角α的正弦、余弦、正切、余切、正割、余割分别是

2.正弦、余弦、正切、余切、正割、余割分别可看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,这六个函数统称为三角函数.

注 确定三角函数的定义域时,主要应抓住分母为零时比值无意义这一关键,当且仅当角的终边在坐标轴上时,点P的坐标中必有一个为0.

3.三角函数值的符号

各三角函数值在每个象限的符号如图(各象限注明的函数为正,其余为负).

例1 已知sinα>sinβ,则下列命题成立的为( ).

A.若α、β是第一象限角,则cosα>cosβ

B.若α、β是第二象限角,则tanα>tanβ

C.若α、β是第三象限角,则cosα>cosβ

D.若α、β是第四象限角,则tanα>tanβ

答案 D.

A.{—2、4}

B.{—2、0、4}

C.{—2、0、2、4}

D.{—4、—2、0、2、4}

答案 B.

例3 已知点P(sinα—cosα,tanα)在第一象限,则在[0,2π)内α的取值范围( ).

分析 在同一直角坐标系中作出单位圆和直线y=x,由已知有sinα>cosα,故角α的终边应该落在直线y=x的上方半个圆内.

又∵tanα>0,角α的终边应该落在第Ⅰ、第Ⅲ两个象限内,如图,可知.应选B.

例4 (1)角α的终边上一个点P(4t,—3t)(t≠0),求2sinα+cosα的值.

(2)已知角β的终边在直线上,用三角函数定义,求sinβ和cotβ的值.

分析 (1)由题目特点,可考虑利用三角函数的定义求解.

解 据题意,有x=4t,y=—3t,

(2)设P(a,)(a≠0)是角β终边y=上一点,则

若a<0,则β是第三角限角,r=—2a,

此时

若a>0,则β是第一角限角,r=2a,

此时

评注 本例(1)(2)中参数t和a都是不为零的实数,所以应对它们分类讨论,这是不应忽略的.

例5 已知一扇形的中心角是α,所在圆的半径是R.

(1)若α=60°,R=10cm,求扇形的弧长及该弧所在的弓形面积.

(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积.

解 (1)设弧长为l,弓形面积为S,

声明:本文搜集自网络,观点仅代表作者本人,不代表本站立场。
热门推荐
  • 野史解密
  • 民间故事
  • 幽默故事
  • 童话故事
  • 历史故事
推荐阅读
豫让:模范忠臣
豫让:模范忠臣
赵氏灭掉了智伯领导的智氏集团。为了抒发自己报仇雪恨后的喜悦心情,赵氏的老大赵襄子找来能工巧匠,把智伯的脑袋砍下来做成了一件工
九天玄女为何称为“风水圣姑”?
九天玄女为何称为“风水圣姑”?
九天玄女又叫玄女,是中国古代神话中的女神,这位女神后来被道教所信奉,成了道教中著名的女仙。
赵奢识子,赵括纸上谈兵
赵奢识子,赵括纸上谈兵
赵奢,嬴姓,赵氏,名奢。战国时代东方六国的八名将之一,简曰马氏。汉族,赵国人,与赵王室同宗,当届贵族,战国后期赵国名将。赵奢,是战国时赵国
赵奢救阙与
赵奢救阙与
周赧王四十五年(公元前270年),秦国侵犯赵国,包围了阙与(今山西和顺县西北)。赵王召老将廉颇、乐乘问道:"能否出兵相救?"廉颇说:"
戚继光斩子之谜
戚继光斩子之谜
戚继光真的斩子了吗?这其中缘由,且让我们一探究竟。
西汉历史上丞相张苍靠食人乳活了一百多岁
西汉历史上丞相张苍靠食人乳活了一百多岁
日本人将“一杯牛奶强壮一个民族”奉为盛典,结果真的让“小日本”形象彻底改变,据说现在日本人的平均身高比中国还高出两厘米。牛奶