三角函数的最值

书籍:高中数理化公式定理大全 作者:雷扬, 欧阳占宝, 夏力安 朝代:2008-10-01 专题:书籍

求三角函数的最值一般有如下三种方法.

1.三角方法:先通过三角恒等变换,化为只含有一个角的一种三角函数的式子,再依|sinx|≤1或|cosx|≤1来确定函数的最值.

2.代数方法:先通过变量代换转化为代数函数,再选用配方法、不等式法、判别式法、单调性法等求解,注意先确定换元后函数定义域.

3.解析法:将三角函数与坐标定义联系起来运用解析的知识来求其最值,这时,点线之距离公式,直线方程等都有用武之地.

三角函数的最值有如下几种常见类型.

1.y=asinx+b设t=sinx化为一次函数y=at+b在闭区间[—1,1]上的最值求解.

2.y=asinx+bsinx+c设t=sinx化为二次函数y=at+bt+c在闭区间[—1,1]上的最值求解.

3.y=asinx+bcosx引入辅助角φ(tanφ)化为求解.

4.y=asinxcosx+b(sinx±cosx)令t=sinx±cosx化为二次函数t在闭区间上求解.

5.y=atanx+bcotx设t=tanx化为用判别式法求解.

6.可转化为sin(x+φ)=f(y)的形式.

再根据正弦函数的有界性求解,特别地也可利用数形结合转化为解析的知识求解.

例1 当时,函数f(x)=的( )

A.最大值是1,最小值是—1.

B.最大值是1,最小值是—1/2.

C.最大小值是2,最小值是—2.

D.最大值是2,最小值是—1.

由y=sint,的图象知:时,sint有最小值—1/2,f(x)有最小值—1;时sint有最大值1,f(x)有最大值2,故选D.

例2 求函数y=(1+sinx)(1+cosx)的最大值.

解 y=(1+sinx)(1+cosx)

=1+sinx+cosx+sinxcosx.

设t=sinx+cosx,(由三角函数的有界性知)

则sinxcosx=1/2(t—1),即得y=1/2(t+1).

∴当时,

评析 对于解含有sinx+cosx和sinx·cosx的函数的最值问题,我们一般用此法求解.

例3 求函数的最大值和最小值.

解 解法一:函数的几何意义为两点P(—2,0),Q(cosx,sinx)连线的斜率k,而Q点的轨迹为单位圆,由图可知 ,∴

解法二:上述函数的最值问题,可令(t∈R),

声明:本文搜集自网络,观点仅代表作者本人,不代表本站立场。
热门推荐
  • 野史解密
  • 民间故事
  • 幽默故事
  • 童话故事
  • 历史故事
推荐阅读
宋国华元被俘,留在楚国的故事
宋国华元被俘,留在楚国的故事
华元作为人质留楚期间,通过公子侧结交了公子婴齐,与婴齐十分要好。一日,聚会之间,论及时事,公子婴齐感叹道:“今晋、楚分争,日寻干戈,天下
伊尹负鼎典故
伊尹负鼎典故
“伊尹负鼎”是一个典故,出自司马迁的《史记·殷本纪》,主要讲的是伊尹给商汤借着谈论厨艺的机会跟他讲治国之道的故事。也有学者把
雍正为何悄悄修改铸钱比例?
雍正为何悄悄修改铸钱比例?
雍正为何悄悄修改铸钱比例?其中哟这么一个故事。雍正登基伊始,就碰到了铸钱币铜铝比例的问题。他在了解到父皇康熙铸币的漏洞后,为什
庞涓轻敌,惨遭兵败?
庞涓轻敌,惨遭兵败?
周显王28年,魏惠王派庞涓统帅大军,去攻打韩国。韩国抵挡不住魏军,被迫向齐国求援,齐国国王召集大臣们商议,是否出兵去救韩国。
苏代巧辩得高都
苏代巧辩得高都
战国时期 ,韩、魏、赵、秦为了争夺高都 (范围大致为原晋城、高平 、陵川三县地),打得你死我活,都曾占领过高都。而弱不禁风的周室,也
岳飞精忠报国遭陷害,敌军奔走相庆,狂饮三日
岳飞精忠报国遭陷害,敌军奔走相庆,狂饮三日
岳飞,字鹏举,老家在河南汤阴,父母都是农民,他出生后不久,父亲就被大水淹死了。岳飞和他的母亲坐在缸中逃了出来,后来,岳飞一边识字一边学