最小作用量原理

动力学中的一个变分原理。由保守系统的动力方程可以导出这个原理,也可自这原理导出动力方程。这原理可表述为:对于定常保守系统,作用量Tdt的积分的全变分为零。即

(1)

式中T为动能;t为时间;Δ为全变分记号。Δ与变分记号δ不同之处是:δt=0,而Δt0。将Δ与δ施于同一变量时,有关系式:

Δqq+Δt

因此Δ和δ两符号有关系式:

最小作用量原理还可详述为:对于定常保守系统,在广义坐标q和时间t的联合空间(qq,…,q;t)里,对于机械能E保持不变(即δE=0)的各条路径中,如果路径的端点(包括始点和终点)的全变分为零,则积分对于真实运动的路径和邻近的旁路比较,真实路径的积分是驻值。在一般实际情况中,式(1)确定的积分为极小值,最小作用量原理即由此得名。

对于一个质点,,因此式(1)成为

上式是1744年由 P.-L.M.de保梯最先提出的一个最小作用量原理。他研究这个问题的目的是想配合光学中的费马原则,说明光是一种高速运动着的微粒。L.-V.德布罗意和E.薛定谔等所创立的波动力学(现在都称它为量子力学)也受到力学中的最小作用量原理和光学中的费马原理的许多类似之处的发。后来L.欧拉证明这原理对于一个质点在有心力场中的运动也是成立的。J.-L.拉格朗日把这原理推广到N个自由度的保守系统并给予严格证明,所以这原理称为马保梯-拉格朗日最小作用量原理。

最小作用量原理与哈密顿原理的相同点是:①两者都是作用量的积分的变分原理,对时间不长的运动,两者都是极小值;②两者都是在多维空间(qq,…,q;t)中真实路线积分与旁路线积分的比较;③这两个原理在所设条件下与保守系统的动力方程等效,三者可互相推导。最小作用量原理与哈密顿原理的不同点是:①哈密顿原理以为作用量,L为动势,最小作用量原理以为作用量;②哈密顿原理的始点和终点在多维空间(qq,…,qt)中为两定点,变分为等时的,即δt=0,最小作用量原理的始点q和终点q的全变分为零。即Δq=Δq=0,且机械能E在各条路线上相同,即δE=0。两种作用量有关系式:

式中H为哈密顿函数。

声明:本文搜集自网络,观点仅代表作者本人,不代表本站立场。
热门推荐
  • 野史解密
  • 民间故事
  • 幽默故事
  • 童话故事
  • 历史故事
推荐阅读
王冕好学
王冕好学
元朝末期,出了个有名的画家王冕。从小好学,而家境贫寒。由于读不起书,只好帮着家里放牛。七八岁时,有一天他路过学堂门口,听到里面琅琅
妇女祭祀床公、床母
妇女祭祀床公、床母
我国汉族有床神信仰,床神有床公、床母之分。也许是由于妇女在生育中的地位和作用,民间在床神信仰中,多以“床婆”、“床母”相称,而“
董卓的家庭
董卓的家庭
董君雅,董卓之父,颍川纶氏尉。池阳君,董卓之生母,只知封号,未知其姓氏(一说姓牛),年九十,于郿坞坞门被斩首。
雍正被恐吓之谜
雍正被恐吓之谜
雍正游玩西湖正在兴头上的时候,突然收到了一封神秘的恐吓信,这封恐吓信信的主人又是谁?信中究竟说了些什么,竟然让威风八面的皇帝吓了
「田忌赛马」的战略可以用博弈论解释吗?
「田忌赛马」的战略可以用博弈论解释吗?
没有真正意义上学过什么博弈论,只看过一两节耶鲁的公开课。我认为博弈论所面对的情形是不稳定的动态过程,每个决策方都可能临时做出
蔡泽说范雎
蔡泽说范雎
秦昭襄王五十二年(公元前255 年),河东郡郡守王稽因为通敌被处死。应(ying)侯范雎(ju)是由于王稽的举荐才做了丞相,因此他闷闷不乐。